
UCRL-JC-133451 - 
PREPRINT 

Design Considerations and Performance of a 
Scalable Version of a Nonhydrostatic 

Atmosphere Model 

A.A. Mirin 
G. Sugiyama 
R.M. Hodur 

J.M. Schmidt 
S. Chen 

This paper was prepared for submittal to the 
DOD High Performance Moderization Program Users’ Group Conference 

Monterey, CA 
June 7-l 0,1999 

April 27,1999 

the understkding-that it will not be-cited or reproduced without the permission of the . ..A.. -.. 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



Design Considerations and Performance of a Scalable Version of a 
Nonhydrostatic Atmospheric Model 

A.A. Mirin and G. Sugiyama 
Atmospheric Science Division 

Lawrence Livermore National Laboratory 
Livermore, CA 94550 

R.M. Hodur, J.M. Schmidt and S. Chen 
Marine Meteorology Division 
Naval Research Laboratory 

Monterey, CA 93943 

Abstract 

The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction 
System (COAMPS) is being developed into a parallel, scalable model in a joint 
collaborative effort with Lawrence Livermore National Laboratory. The initial focus is on 
the atmospheric forecast model, which solves a coupled, three-dimensional set of 
dynamical equations using finite differences. A distributed/shared memory parallel 
programming paradigm is used. Distributed memory parallelism is achieved through a 
two-dimensional domain decomposition technique, with internodal communication 
accomplished using Message Passing Interface (MPI), and OpenMP is used to provide 
parallelism within a node. Initial performance results on both the IBM-SP and Cray-T3E 
are presented. 

Introduction 

The Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory 
(LLNL) are collaborating in the massive parallelization of NRL’s Coupled 
Ocean/Atmosphere Mesoscale Prediction System (COAMPS). The main purpose of this 
enterprise is to take advantage of emerging scalable technology, in order to treat the finer 
spatial and temporal resolutions needed in complex topographical or atmospheric 
conditions, as well as to allow the utilization of improved but computationally expensive 
physics packages. The parallel model will facilitate the ability to provide real-time, high- 
resolution, multi-day numerical weather predictions for forecaster guidance, input to 
atmospheric dispersion simulations, and forecast ensembles. 

COAMPS consists of an atmospheric data assimilation system, a nonhydrostatic 
atmospheric forecast model, and an ocean model. The initial focus of this project is on 
the atmospheric forecast model [ 11, which solves the nonhydrostatic, compressible form 
of the dynamical equations and includes relevant physical processes such as explicit 
moist physics, and parameterizations for cumulus convection, radiation, and subgrid- 
scale mixing. A variety of map projection coordinate systems are supported and a vertical 
sigma coordinate is used to treat flow over an irregular surface. The equations are 



discretized using finite differences on an Arakawa C grid [2]. An arbitrary number of _ 
fixed nests are allowed, under the constraint of a 3: 1 reduction of grid spacing between 
successive grids. The time-differencing scheme is fundamentally explicit in the 
horizontal direction, with subcycling to evolve the faster moving sound and gravity 
waves. An implicit treatment is made for the vertical terms responsible for sound waves 
and the Brunt-Vaisala frequency. Most horizontal derivatives are represented to second- 
order accuracy, with options to use fourth-order methods for the diffusion and advection. 

Parallelization Methodology 

Domain Decomposition 

A domain decomposition technique is used to partition the full grid among an arbitrary, 
runtime-specified number of nodes of a parallel machine, with each grid potentially 
having its own decomposition. Because of the tight vertical coupling, the decomposition 
is limited to the two horizontal directions. Each subdomain contains an arbitrary number 
of extra halo rows (typically one or two) to facilitate finite differencing and data 
communication with nearest neighbors. Two halo rows are warranted when running with 
fourth order advection or diffusion, since those operator stencils extend two points in 
each direction. However, the use of a single halo row is supported, even when performing 
fourth-order differencing. This results in a slight savings of memory and less redundant 
border computation, but at the expense of additional communication calls. 

Interprocess Communication 

Communication between subdomain processes is achieved via Message Passing Interface 
(MPI). MPI derived data types are used for automatic gathering and scattering of 
communicated data. The use of contiguous buffers remains a code option and aids in 
debugging and performance comparison. 

There are several patterns of communication, the most prevalent of which is nearest 
neighbor border communication, including support for periodic boundary conditions. 
Communication in each of the four directions is carried out using synchronous MPI send 
and receive calls. The inclusion of border cells in the transverse direction obviates the 
need for separate diagonal messages to handle the corner points. A small number of 
global reductions are required as well, primarily in the radiation (which is called every 
several time steps) and moisture physics; some global reductions also occur in the 
diagnostics, timing and initialization. 

The other prevalent form of communication is between nested grids. Coarse grid points 
covering several outer zones of the finer grid must be communicated to the finer grid, so 
that the coarse mesh data can be properly blended with the fine mesh data. Because the 
finer grid represents an arbitrary geographical subset of the coarser grid, and because 
each grid is allowed its own domain decomposition, there is no obvious correspondence 
between the computational processes of the coarse and fine grids. Intergrid 
communication is therefore addressed by examining all of the possible connections 



between coarse mesh subdomains and fine mesh subdomains, and building 
communication tables during the initialization phase of the program. The actual 
communication consists of blocking sends and nonblocking receives. Communication 
from a fine mesh to a coarser mesh, which entails smoothing of the fine mesh data, is 
accomplished using a similar procedure. 

Parallelization within a Node 

Additional parallelization is carried out within a subdomain, invoking the de-facto 
standard OpenMP [3]. OpenMP is available at different levels of maturity on most high- 
performance computing platforms. At this stage of the implementation our use of 
OpenMP consists largely of loop-level parallelism. Most of the parallel loops cover a 
single physical dimension, one exception being the treatment of the long wave radiation. 
The OpenMP standard includes nested parallelization; however, this construct is not yet 
commonly supported. 

Parallelization in a single dimension is adequate for architectures having a small number 
of processors per node, but it is not scalable. Even on the next generation IBM machine 
(which increases the number of processors per node from 4 to 16), dimensions would 
have to be chosen carefully to maintain a reasonable parallel efficiency. 
Multidimensional parallelism can be achieved through nested constructs or dimensionally 
combined loops, and represents a scalable methodology. 

Parallel Vector Processors 

COAMPS has historically supported vector processors by compressing two-dimensional 
loops into a single dimension. This practice is included as an option in the current parallel 
version. It should be noted, however, that compressed loops typically require redundant 
computations. For example, calculations that involve only the interior of the horizontal 
domain must include the “east-west” borders as well to avoid indirect indexing. This is 
another rationale for allowing a single border row even when invoking fourth order 
differencing. 

Fortran- 

The code, originally written in Fortran-77, now utilizes a number of Fortran- 
constructs. Memory management is carried out using pointers and allocatable arrays, with 
physical quantities on multiple grids represented through derived data types. 
Unfortunately, Fortran- does not support the use of allocatable arrays as components of 
derived data types; hence one must use pointers instead. This leads to compiler 
inefficiencies for subroutines having large numbers of pointer array arguments, which are 
not assumed to be contiguous. This problem is circumvented through use of subroutine 
interfaces and assumed size arrays. 

Input and Output 



Global binary data files produced by the analysis code provide physical input to the 
forecast model. Data is read in by a single MPI process, which may be either one of the 
existing computational processes or a separate dedicated I/O process. The use of a 
separate I/O process (corresponding to a separate computational node) allows separation 
of large global arrays and smaller local arrays, which can be useful when the memory per 
node is limited. Once read in, the data is communicated to the various computational 
processes. 

We have added the capability for each computational process to write its own component 
output file, with a separate postprocessor combining and analyzing the code data. Output 
can also be handled analogously to the input, with the logical requirement that the output 
file be independent of the number of processes used in the computation. 

Load Balance 

Attaining high parallel efficiency is dependent on balancing the computational load 
among the processors that are participating in the calculation, so that the amount of work 
per processor is comparable between barrier synchronization points. The dynamics is 
inherently load balanced, as the same equations are solved throughout the computational 
domain. However, the radiation and moisture physics are dependent on factors such as 
the available sunlight and water vapor concentration, which can lead to spatially and 
temporally varying computational times. 

The degree of load imbalance typically increases as the domain decomposition becomes 
finer and finer. That leads to an interesting tradeoff between distributed and shared 
memory parallelism, especially on non-uniform memory access (NUMA) architectures 
such as the SGI Origin. One can choose to have a coarse decomposition (a small number 
of MPI processes) and a high degree of shared memory parallelism, or a fine 
decomposition (a large number of MPI processes) and smaller parallel loops. For a 
constant number of processors, as the decomposition coarsens, the distributed memory 
parallelization efficiency should improve due to the smaller surface area to volume ratio, 
but the shared memory parallelization efficiency should worsen due to memory conflicts 
and data nonlocality. As the subdomains get larger, the degree of load balance should 
improve. Load balance could determine the optimal strategy. 

Performance 

The parallelized code has been tested on a number of architectures, including the ASCI 
[4] Blue Pacific IBM-SP and the DEC-Alpha machines at Lawrence Livermore National 
Laboratory, and the Cray-T3E and SGI Origin 2000 machines located at the Naval 
Oceanographic Office (NAVO) Major Shared Resource Center (MSRC) in Stennis Space 
Center, MS. Tables 1 and 2 present performance results on the SP and T3E for an 
analytical, single-nested case that includes radiation (but not moisture). The grid contains 
323 points in each of the horizontal directions and 30 points in the vertical direction, and 
square domain decompositions ranging from 16 to 256 subdomains are used. For the 
finest decomposition, the subdomains have roughly 20 points in each horizontal 



direction. On the IBM we assign MPI processes to each computational processor; that _ 
corresponds to four processes per node. The T3E by design supports only one process per 
node. 

The relative parallel efficiency for the overall algorithm in going from a 4 x 4 
decomposition to a 16 x 16 decomposition is 80% on the IBM and 61% on the Cray. 
Interestingly, the computer time on both machines is almost identical at 8 x 8 and 16 x 16 
decompositions. The IBM shows a huge speedup when going from 16 to 64 subdomains, 
probably due to superior cache utilization at the finer decomposition. 

The parallel efficiency of the radiation package is close to 100% on each machine (the 
166 s. figure on the T3E seems anomalously large). That is because the radiation 
algorithm (which takes a larger fraction of the compute time on the T3E) is compute- 
intensive and involves few communications. This result is somewhat optimistic in that 
the test problem takes place wholly during the daytime, thereby avoiding day/night load 
imbalances. 

The results suggest that the use of fewer’than 400 points per subdomain horizontally is 
not recommended. However, neither machine is being utilized to its fullest. The IBM is 
expected to attain superior scaling using the mixed programming model (OpenMP rather 
than pure MPI on-node). The T3E is known to attain better communication performance 
under SHMEM. The use of MPI-2 (the follow-on to MPI) might reap some rewards, as it 
supports one-sided communication. 

Conclusions and Future Directions 

The initial parallelized version of the COAMPS forecast model is nearly complete. The 
dynamics and radiation have been fully parallelized (in distributed memory) for a single 
grid and analytical input data. Parallelization of the moisture, multi-nesting capability, 
real data, and I/O are in progress. Implementation of shared memory parallelism is also in 
progress. 

The parallel performance of the model will undergo further evaluation and improvement 
as appropriate. In particular, the use of one-sided (asynchronous) communications under 
MPI-2 (when available) and of MPI-IO for code input and output will be investigated. As 
noted above, it will be important to implement the shared memory parallelization 
constructs in a scalable manner and to carefully examine the tradeoff between distributed 
and shared memory parallelism. Every effort will be made to adhere to standards in order 
to maintain portability, so as to minimize recoding and accommodate a variety of 
architectures. 

Acknowledgments 

This is LLNL Report UCRL-JC- 13345 1. Work performed under the auspices of the 
U.S.D.O.E. by Lawrence Livermore National Laboratory under contract No. W-7405- 
ENG-48, and by the Naval Research Laboratory with support from the Office of Naval 



Research through Program PE-0602435N and from the Department of Defense through 
Program PE-0603755D. 

References 

[I] R.M. Hodur, The Naval Research Laboratory’s Coupled Ocean/Atmosphere 
Mesoscale Prediction System (COAMPS), Monthly Weather Review, Vol. 125, 1997, pp. 
1414-1430. 

[2] A. Arakawa and V. Lamb, “ Computational Design of the Basic Dynamical Processes 
of the UCLA General Circulation Model,” Methods in Computational Physics, Vol. 17, 
1977, pp. 173-265. 

[3] “OpenMP,” http://www.openmp.org. 

[4] “Accelerated Strategic Computing Initiative,” http://www.llnl.gov/asci, Lawrence 
Livermore National Laboratory Report UCRL-MI- 125923. 

Table 1. Parallel Performance on the IBM-SP. Times (in seconds) are shown for 
both the overall algorithm and the radiation only. Efficiencies are relative to the 

coarsest decomposition case. 

Decomp. Time (total) Eff. (total) Time (rad.) Eff. (rad.) 

4x4 1317 --- 430 m-m 
8x8 310 106% 103 104% 
16x 16 104 80% 26 103% 

Table 2. Parallel Performance on the Cray-T3E. Times (in seconds) are shown for 
both the overall algorithm and the radiation only. Efficiencies are relative to the 

coarsest decomposition case. 

Decomp. Time (total) Eff. (total) Time (rad.) Eff. (rad.) 

4x4 1030 --- 544 mm- 
8x8 314 82% 166 82% 
16 x 16 105 61% 35 97% 


